VAT forecast of large taxpayers, using a Linear Stationary Model

Main Article Content

Erick Galarza Molina
Alfredo Loja Villalta
Patricio Baculima Cuesta
Karla Sigüenza García

Abstract

In Ecuador, VAT incurred tax collection exceeds 50% of total tax collection, with large taxpayers make up the majority of tax collection by economic sector, so that modeling and forecasting the evolution of the tax variable is relevant for the formulation of public policies and state budget planning. This research aims to model the VAT incurred tax collection of large taxpayers in the period 2011-2023 through linear stationary models, such as the ARIMA and SARIMA processes, using the Box-Jenkins methodology and informational criteria for the estimation and validation of the model; in addition, to forecast the evolution of this tax variable towards 2024. Once the appropriate model with a practically perfect fit has been identified, this being a SARIMA (1,1,1)×(1,0,1)_12, the forecast for 2024 indicates that collection will increase by 4.73% with respect to 2023 in December, considering some possible causes of this behavior. In 2024, a sort of collection cycle is maintained with peaks in the last month, while in the others the activity slows down, even in June. A limitation of this research is the non-consideration of GARCH effects and control variables within the estimation, so it is recommended that future research consider these guidelines.

Downloads

Download data is not yet available.

Article Details

Section

Focus

How to Cite

Galarza Molina, Erick, Alfredo Loja Villalta, Patricio Baculima Cuesta, and Karla Sigüenza García. 2026. “VAT Forecast of Large Taxpayers, Using a Linear Stationary Model”. Estudios De La Gestión: Revista Internacional De Administración, no. 19 (January): 75-102. https://doi.org/10.32719/25506641.2026.19.4.

References

Amaya González, A. S. (2014). La recaudación tributaria en el Ecuador: Análisis de series de tiempo con cambios de régimen (1993-2011) [Tesis doctoral, Escuela Politécnica Nacional]. https://surl.li/iyychp.

Box, G. E. P., & Jenkins, G. M. (1970). Time series analysis: Forecasting and control (1st ed.). Holden-Day.

Büyük?ahin, Ü. Ç., & Ertekin, ?. (2019). Improving forecasting accuracy of time series data using a new ARIMA-ANN hybrid method and empirical mode decomposition. Neurocomputing, 361,151–163. https://doi.org/10.1016/j.neucom.2019.05.099. DOI: https://doi.org/10.1016/j.neucom.2019.05.099

Comisión Económica para América Latina y el Caribe (CEPAL). (2009). Crisis, volatilidad, ciclo y política fiscal en América Latina. Naciones Unidas. https://surl.li/tnklre.

EC 2008. Constitución de la República del Ecuador. Registro Oficial 449, 20 de octubre. https://n9.cl/hd0q.

EC 2018. Código Tributario. Registro Oficial Suplemento 38, 21 de agosto. https://n9.cl/h59fu.

Galán, A. (2014). Modelo ARIMA aplicado al tipo de cambio peso-dólar en el periodo 2016-2017 mediante ventanas temporales deslizantes. Contaduría y Administración, 59(3), 331-357. https://doi.org/10.21919/remef.v15i3.466. DOI: https://doi.org/10.21919/remef.v15i3.466

Gómez Ponce, L. (2020). Ingresos por recaudación tributaria fueron menores durante la emergencia. Observatorio de Gasto Público, Fundación Ciudadanía y Desarrollo. https://n9.cl/9k6oq.

Gómez, V., & Maravall, A. (1994). Estimation, Prediction and Interpolation for Nonstationary Series with the Kalman Filter. Journal of the American Statistical Association, 89(426), 611-624. https://doi.org/10.2307/2290864. DOI: https://doi.org/10.1080/01621459.1994.10476786

Gujarati, D. N., & Porter, D. C. (2009). Basic econometrics (5th ed.). McGraw-Hill/Irwin. https://surl.li/vnpbqn.

Jenkins, G. P., Kuo, C.-Y., & Shukla, G. P. (2000). Tax analysis and revenue forecasting: Issues and techniques. Harvard Institute for International Development. https://surl.li/fhtmmq.

Johnston, J., & DiNardo, J. (1996). Econometric methods (4th ed.). McGraw-Hill. https://n9.cl/cwe2jw.

Koehler, A. B., & Murphree, E. S. (1988). A comparison of the Akaike and Schwarz criteria for selecting model order. Journal of the Royal Statistical Society. Series C, Applied Statistics, 37(2), 187. https://doi.org/10.2307/2347338. DOI: https://doi.org/10.2307/2347338

Kumar, Manoj & Anand, Madhu. (2014). An Application Of Time Series Arima Forecasting Model For Predicting Sugarcane Production In India. Studies in Business and Economics. 9. 81 - 94. https://n9.cl/6ltbt.

Luchko, M., Drozd, I., Plutytska, K., Ruska, R., & Vovk, I. (2021). Analysis and modelling of value added tax revenues on imports: Some issues of application in Ukraine. International Journal of Production Management and Engineering, 9(1), 37. https://doi.org/10.4995/ijpme.2021.13984. DOI: https://doi.org/10.4995/ijpme.2021.13984

Mahadeva, L., & Robinson, P. (2004). Unit root testing to help model building. In A. Blake & G. Hammond (Eds.), Handbooks in central banking (Chap. 22). Centre for Central Banking Studies, Bank of England.

Makananisa, Mangalani P. (2015) Forecasting annual tax revenue of the South African taxes using time series Holt-Winters and ARIMA/SARIMA Models, University of South Africa, Pretoria, http://hdl.handle.net/10500/19903.

Martin-Mayoral, F. R. (2002). Los factores determinantes de la recaudación tributaria. Revista del XVI Seminario Nacional de la ASAP, 2-6. https://n9.cl/wpphz.

Martin-Mayoral, Fernando R. «Los factores determinantes de la recaudación tributaria.» Revista del XVI Seminario Nacional de la ASAP, Septiembre 2002: 2-6.

Mauricio, J. A. (2007). Introducción al análisis de series temporales. Universidad Complutense de Madrid. https://n9.cl/famvvl.

Meyler, A., Kenny, G., & Quinn, T. (1998). Forecasting Irish inflation using ARIMA models. Central Bank and Financial Services Authority of Ireland Technical Paper Series, 3/RT/98, 1-48. https://n9.cl/m0suk.

Pincheira Brown, P., & García Marín, Á. (2009). En búsqueda de un buen benchmark predictivo para la inflación. Documentos de Trabajo del Banco Central de Chile, (514). Banco Central de Chile. https://n9.cl/ldn7w3.

Pindyck, R. S., & Rubinfeld, D. L. (1997). Econometric models and economic forecasts (4th ed.). McGraw-Hill.

Santos, M., & Pacheco Feria, U. (2018). Pronóstico del comportamiento de los precios del petróleo empleando los modelos ARIMA. Anuario Facultad de Ciencias Económicas y Empresariales de la Universidad de Oriente, 9, 19-34. https://n9.cl/dqd16.

Stiglitz, J. E. (2003). La Economia del Sector Publico. Antoni Bosch Editor. https://n9.cl/n95uo.

Stock, J. H., y Watson, M. W. (2012). Introducción a la Econometría (3ra. ed.). Pearson. https://n9.cl/vc7jgm.

Tang, L., Chen, J., & Zhao, J. (2019). A hybrid ARIMA and SVM model for stock price prediction. https://doi.org/10.48550/arXiv.1903.12012.

Urrutia, Jackie & Mingo, Francis & Balmaceda, Ciandreu Noah. (2015). Forecasting Income Tax Revenue of the Philippines Using Autoregressive Integrated Moving Average (Arima) Modeling: a Time Series Analysis. American Research Throughts. DOI:10.6084/M9.FIGSHARE.1469539.

Wa Nkongolo, S. (2024). Forecasting mobile data consumption using ARIMA models: A comparative analysis with deep learning techniques. https://doi.org/10.3390/eng4010006. DOI: https://doi.org/10.3390/eng4010006

Wooldridge, J. M. (2009). Introductory Econometrics: A Modern Approach (4th ed.). South Western Cengage Learning.

Yu, W. (2023). Stock market forecasting using ARIMA and spline interpolation methods.

https://doi.org/10.48550/arXiv.2311.10759.