Valor en riesgo de crédito y déficit esperado aplicando cópulas

Autores/as

DOI:

https://doi.org/10.32719/25506641.2021.9.4

Palabras clave:

cópula, riesgo de crédito, valor en riesgo de crédito, déficit esperado

Resumen

Este trabajo presenta una aplicación de la teoría de cópulas a un portafolio de crédito de consumo ecuatoriano. Para la aplicación primero se estimaron las distribuciones marginales
de la tasa de incumplimiento y del monto de exposición con base en la información histórica; luego, se construyeron cópulas y se aplicó el Teorema de Sklar a través de modelos de distribuciones multivariadas de cópulas (MVDC). Posteriormente, conociendo la estructura de dependencia, se estimó la pérdida total de la cartera, máxima pérdida, Credit VaR y Expected Shortfall (ES). Considerando un nivel de confianza de 99,5 %, en condiciones normales de mercado en un mes, la máxima pérdida que puede presentar el portafolio es de USD 18,65 millones (Credit VaR). De modificarse algún factor yempeorarse las condiciones de mercado, una vez superada la máxima pérdida, la pérdida esperada luego del Credit VaR, es decir el ES, puede alcanzar un valor de USD 21,49 millones (15,22 % más que el Credit VaR). Finalmente, al comparar las estimaciones de los MVDC con la metodología del organismo de control ecuatoriano, se demostró que esta última subestima la pérdida esperada, indicadores de riesgo y eventos de pérdida extrema. Al no predecir los eventos extremos, se subestiman las pérdidas potenciales y aumenta el nivel del riesgo.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

Bickel, Peter, Peter Diggle, Stephen Fienberg, Ursula Gather, Ingram Olkin y Scott Zeger. 1991. An Introduction to Copulas. Portland: Springer Series in Statistics.

Boyé, Erick, Ashkan Ñikeghbali, Valdo Durrleman, Gaël Riboulet y Thierry Roncalli. 2000. “Copulas for Finance. A Reading Guide and Some Applications”. International Conference in Finance. Londres. Accedido 18 de abril. http://ssrn.com/paper=1032533.

Braxton, Peter, y Travis Manning. 2011. “Probability Distributions for Risk Analysis”. Washington D. C. Cost Estimating and Analysis Association. Accedido 18 de abril. https://bit.ly/2PFVt6a.

Chang, Jow-ran, y An Chi Chen. 2010. “Copula, Correlated Defaults and Credit VaR”. En Handbook of Quantitative Finance and Risk Management, editado por Cheng Few Lee y John Lee, 697-711. Boston: Springer. https://doi.org/https://doi.org/10.1007/978-0-387-77117-5_46.

Chen, James Ming. 2018. “On Exactitude in Financial Regulation: Value-at-Risk, Expected Shortfall, and Expectiles”. Risks 6 (2): 3-20. https://doi.org/10.3390/risks6020061.

Cherubini, Umberto, Elisa Luciano y Walter Vecchiato. 2004. Copula Methods in Finance. Nueva Jersey: Wiley Finance Series.

Choe, Geon H., y Jang Hyun Jin. 2011. “Efficient Algorithms for Basket Default Swap Pricing with Multivariate Archimedean Copulas”. Insurance: Mathematics and Economics 48 (2): 205-213. https://bit.ly/3enZeHT.

Choudhry, Moorad. 2006. An Introduction Value-At-Risk. West Sussex: John Wiley & Sons Ltd.

Clemente, Annalisa Di, y Claudio Romano. 2004. “Measuring and Optimizing Portfolio Credit Risk: A Copula-Based Approach”. Economic Notes 33 (3): 325-357.

https://doi.org/10.1111/j.0391-5026.2004.00135.

Díaz Hernández, Adán, y José Carlos Ramírez. 2009. “Una metodologia basada en cópulas y valores extremos para estimar el capital económico requerido de un portafolio de créditos al menudeo”. Revista de Análisis Económico 24 (2): 95-132. http://dx.doi.org/10.4067/S0718-88702009000200004.

EC. 2004. Libro I.- Normas Generales para la aplicación de la Ley General de Instituciones del Sistema Financiero.- Título X.- De la gestión y administración de riesgos. Capítulo II de la Administración del Riesgo de Crédito. Registro Oficial 250, Suplemento, 13 de enero.

Edinson, Caicedo, Claramunt M. Mercè y Monserrat Casanovas. 2011. “Medición del riesgo de crédito mediante modelos estructurales: una aplicación al mercado colombiano”. Cuadernos

de Administación 24 (42): 73-100. https://bit.ly/3c88TlE.

Embrechts, Paul, Alexander Mcneil y Daniel Straumann. 1999. “Correlation: Pitfalls and Alternatives”. Risk Magazine 12 (5): 69-71. https://bit.ly/2FOWtTD.

Fiorito, Fabián. 2006. “La simulación como una herramienta para el manejo de la incertidumbre”. Tesis de posgrado, Universidad del CEMA, Buenos Aires. https://bit.ly/3285mk7.

Frey, Rüdiger, y Alexander McNeil. 2002. “VaR and Expected Shortfall in Portfolios of Dependent Credit Risks: Conceptual and Practical Insights”. Journal of Banking and Finance 26 (7): 1317-1334. https://doi.org/https://doi.org/10.1016/S0378-4266(02)00265-0.

Genest, Christian, Bruno Remillard y David Beaudoin. 2009. “Goodness-of-Fit Tests for Copulas: A Review and a Power Study”. Mathematics and Economics 44 (2): 199-213.

https://doi.org/10.1016/j.insmatheco.2007.10.005.

Hull, John. 2007. “VAR versus Expected Shortfall”. Risk Management. Accedido 25 de mayo 2020. https://bit.ly/VAR_ES_HULL.

Iscoe, Ian, Alexander Kreinin, Helmut Mausser y Oleksandr Romanko. 2012. “Portfolio Credit-risk Optimization”. Journal of Banking & Finance 36 (6): 1604-1615.

https://bit.ly/Iscoe_Credit_risk.

Jadhav, Deepak, y T. V. Ramanathan. 2009. “Parametric and Non-Parametric Estimation of Value-at-Risk”. The Journal of Risk Model Validation 3 (1): 51-71. 10.21314/JRMV.2009.034.

Li, David X. 1999. “On Default Correlation: A Copula Function Approach”. The Journal of Fixed Income 9 (4): 43-54. https://doi.org/http://dx.doi.org/10.2139/ssrn.187289.

Li, Ping, Xiaoxu Wang y Haibo Wang. 2013. “A Factor Model for the Calculation of Portfolio Credit VaR”. Procedia Computer Science 17: 611-618. https://doi.org/10.1016/j.procs.2013.05.079.

Liu, Jiubiao. 2011. “Coherent Measures of Credit Portfolio Risk Based on T-Copula”. Journal of Beijing University of Aeronautics and Astronautics 24 (1): 81-85. https://bit.ly/2FvZUiF.

Luo, Changqing, Yanlin Lu y Mengzhen Li. 2015. “Credit Portfolio Risk Evaluation Based on the Pair Copula VaR Models”. Journal of Finance and Economics 3 (1): 15-30.

https://doi.org/10.12735/jfe.v3i1p15.

Maldonado, Diego, y Mariela Pazmiño. 2008. “Nuevas herramientas para la administración del riesgo crediticio: el caso de una cartera crediticia ecuatoriana”. Cuestiones Económicas 24 (2): 5-75. https://bit.ly/35XOijh.

McNeil, Alexander J., Frey Rudiger y Mark A. Nyfeler. 2001. “Copulas and Credit Models”. Risk 10: 111-114. https://bit.ly/32C2YlP.

McNeil, Alexander J.; Frey Rüdiger y Paul Embrechts. 2005. Quantitative Risk Management. Nueva Jersey: Princeton University Press.

Melo, Luis, y Oscar Becerra. 2008. “Medidas de riesgo financiero usando cópulas: teoría y aplicaciones”. Borradores de Economía 489: 1-93. 10.32468/be.489.

Mora, Andrés. 2010. “Una propuesta de creditmetrics y expected shortfall para medición de riesgo de crédito”. Revista Civilizar de Empresa y Economía 1 (2): 104-125.

https://doi.org/10.22518/2462909X.64.

Osei, Price, y Adam Anoke. 2020. “Copula-Based Assessment of Co-Movement and Tail Dependence Structure Among Major Trading Foreign Currencies in Ghana”. Risks 8 (2): 4-20. 10.3390/risks8020055.

Plascencia, Tania. 2012. “Valor en riesgo utilizando cópulas financieras: aplicación al tipo de cambio mexicano (2002-2011)”. Contabilidad y Negocios 7 (14): 57-68. https://bit.ly/337u4Ak.

Romano, Claudio. 2002. Applying Copula Funtion to Risk Management. Bucarest: Banca Roma.

Sahamkhadam, Maziar, Andreas Stephan y Ralf Östermark. 2018. “Portfolio Optimization Based on GARCH-EVT-Copula Forecasting Models”. International Journal of Forecasting 34 (3): 497-506. https://doi.org/10.1016/j.ijforecast.2018.02.004.

Sheppard, Kevin. 2009. “Value-at-Risk, Expected Shortfall and Density Forecasting”. Accedido 27 de abril. https://bit.ly/2WYAcJe.

Szetela, Beata, Grzegorz Mentel y Jacek Brożyna. 2019. “Modelling European Sovereign Default Probabilities with Copulas”. Economic Research-Ekonomska Istrazivanja 32 (1): 1716-1726. https://doi.org/10.1080/1331677X.2019.1629325.

Trabelsi, Nader, y Aviral Kumar Tiwari. 2019. “Market-Risk Optimization among the Developed and Emerging Markets with CVaR Measure and Copula Simulation”. Risks 7 (22): 1-20. https://doi.org/10.3390/risks7030078.

Publicado

2021-02-09

Cómo citar

Andrade Cóndor, A. (2021). Valor en riesgo de crédito y déficit esperado aplicando cópulas. Estudios De La Gestión: Revista Internacional De Administración, (9), 81–108. https://doi.org/10.32719/25506641.2021.9.4
Métricas alternativas